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1 Introduction

In this module will try to explain what happens when two observers look at the same event. Every
observer has his own coordinate system and clock (‘frame of reference’) with which the event is observed.
These frames of references are not independent of each other. In this text we will deduce the relation
between the two.

Some quantities are relative, they depend on the observer, or more specifically the coordinate system
of the observer. Other quantities are independent of the coordinate system, these are called invariant.
With this starting point we end up with Einstein’s famous equation E = mc2. In this text the entire
derivation of this formula is written down. Study it carefully so you can make similar derivations on
your own in the future.

2 Lorentz and Poincaré

Hendrik Antoon Lorentz is one of many Dutch Nobel prize laureates, he won the prize together with
Pieter Zeeman. You might know Lorentz from the (equation for) Lorentz force Fl = l(I ·B). Lorentz won
the Nobel prize for the discovery and theoretical explanation of the Zeeman effect.1

Lorentz was one of the first scientists to work on a theory of relativity (although it was not yet called
relativity). To compare the observations of two observers we need to relate their frames of reference.
This can be done with the use of the Galilean transformation:

x = x′+vt′

y= y′

z = z′

t = t′

(2.1)

Quantities without a prime mark are observed by the observer in the coordinate system without a prime
mark. Quantities with a prime mark ′ are observed by the second observer′ in the coordinate system′

with prime mark.2 In this example only the x-coordinate changes. This means that the second observer′

moved away from the first observer in the x direction with a certain speed v.
1The Zeeman effect describes the interaction between magnetic fields and the spin of particles. See module ‘Fluorescence’

for more details.
2The prime mark is also used to denote the derivative of a function. When using the notation of equation 2.1 it is then

unclear which derivative is meant, time or a specific space? To avoid confusion it is best to denote the derivative to a specific

1
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Galileo Galilei assumed that time is the same in all frames of reference. However, when one approaches
the speed of light this is no longer the case. The speed of light is a constant in the universe (invariant).
Using the Galilean transformation we break this rule. We therefore need a different transformation
method in which the speed of light remains constant. In this text we will only be looking at changes
along the x-axis but all equations below can be expanded to also be valid for changes in other directions:

c = ∆x
∆t

c = ∆x′

∆t′

(2.2)

Lets look at a beam of light originating from the origin at t = 0 travelling along the x-axis. We can use
the following equations to calculate when this beam of light is observed at a certain position:

x = ct

x′ = ct′
(2.3)

x− ct = 0

x′− ct′ = 0
(2.4)

The length of time can differ between the two frames, this allows us the write:

x′− ct′ =λ(x− ct) (2.5)

For a beam of light travelling in the opposite direction:

x′+ ct′ =µ(x+ ct) (2.6)

Both equations are valid at the same time. Lets see if we can solve them.

• The sum of equations 2.5 and 2.6 yields:

x′− ct′+ x′+ ct′ =λ(x− ct)+µ(x+ ct) (2.7)

2x′ = (λ+µ)x− (λ−µ)ct (2.8)

x′ = λ+µ
2

x− λ+µ
2

ct (2.9)

• The difference of equations 2.5 and 2.6 yields:

x′− ct′− (x′+ ct′)=λ(x− ct)−µ(x+ ct) (2.10)

−2ct′ = (λ−µ)x− (λ+µ)ct (2.11)

ct′ =−λ−µ
2

x+ λ+µ
2

ct (2.12)

variable in the following manner: The derivative of the function f (x, y, z, t) with respect to the time t can be written as:
d f (x,y,z,t)

dt .
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By introducing two new constants we can write the above equation in a more concise form:

a = λ+µ
2

(2.13)

b = λ−µ
2

(2.14)

x′ = ax−bct (2.15)

ct′ =−bx+act (2.16)

Lets look at how fast the (coordinate) system′ is moving with respect to the system. We set x′ = 0:

0= ax−bct (2.17)

v = x
t
= bc

a
(2.18)

v
c
= b

a
(2.19)

We can use this to expand equation 2.15:

x′ = a
(
x− b

a
ct

)
(2.20)

x′ = a
(
x− v

c
ct

)
(2.21)

In a similar fashion we can rearrange equation 2.16:

ct = ct′

a
+ bx

a
(2.22)

ct = ct′

a
+ vx

a
(2.23)

Substitution yields:

x′ = a
(
x− v

c

(
ct′

a
+ vx

c

))
(2.24)

x′ = a
(
1−

(v
c

)2
)

x−a
v
c

ct′

a
(2.25)

x′ = a
(
1−

(v
c

)2
)

x−vt′ (2.26)

We set our clocks in such a way that t = t′ = 0. For symmetry reasons a standard length which moves
along with one coordinates system will always be observed in the same way from a second system′.
From equation 2.15 follows:

x′ = ax (2.27)
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This means that a rod with a length of 1 (metre) in system′ will appear to have a length

x = 1
a

(2.28)

in system.

Because we set both times at zero, equation 2.26 becomes:

x′ = a
(
1−

(v
c

)2
)

x (2.29)

When one observes a rod of length 1 in system from system′, the rod will appear to have length:

x′ = a
(
1−

(v
c

)2
)

(2.30)

This transformation works both ways:

x = x′ (2.31)

1
a
= a

(
1

(v
c

)2
)

(2.32)

a = 1√
1− ( v

c
)2

(2.33)

Using equation 2.19:

b =
v
c√

1− ( v
c
)2

(2.34)

Substituting these formula in equations 2.15 and 2.16 yields:

x′ = x−vt√
1− ( v

c
)2

(2.35)

t′ =
t− v

c2 x√
1− ( v

c
)2

(2.36)

This transformation, the Lorentz transformation, is different from the Galilean transformation. There
is a new constant involved in the transformation, the Lorentz factor:

γ= 1√
1− ( v

c
)2

(2.37)

Lorentz was a supporter of the ‘aether’ theory and therefore had some trouble accepting his own equa-
tions. Jules Henri Poincaré had contact with Lorentz and together they improved the new theory of
what would become Lorentz transformations and ultimately relativity. One of Poincarés suggestions
was to imagine space as four dimensional (with time as one of the dimensions). The Lorentz transfor-
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mations then describe this four dimensional world. If we define time as being imaginary in this space3,
vectors always keep their length when transforming from one frame to another:

x2 + y2 + z2 − (ct)2 = x′2 + y′2 + z′2 − (ct′)2 (2.38)

3 Invariants

In the previous sections we saw that quantities can change when we change our frame of reference.
Not al quantities do so, those who do not are called invariant. Michelson and Morley showed with their
experiment4 that the speed of light is invariant.

We can describe the state of an object using a position vector and time. Remember that most quantities
are relative sush as these position vector and time. A more useful way of describing an object is by stat-
ing its momentum and energy. These two quantities can (and are) also used when describing collisions.
Both momentum and location consist of three directions: x, y, and z. Time, according to Poincaré and
Minkowski, is a fourth direction. When talking about momentum, energy can be seen as the fourth
dimension.

The state of an object can thus be described as a four dimensional vector; 4-vector. The four components
of a momentum/energy vector can be transformed from one system to another system′ which moves
along it x-axis using the following equations:

p′
x = γ

(
px −βE

c

)
p′

y = py

p′
z = pz

E′

c
= γ

(
E
c
−βpx

)
(3.1)

In these equations p denotes momentum and E denotes energy. β is a new variable, it describes how
fast the systems are moving with respect to each other β= v

c (compare this to the earlier variables a and
b). If we want to convert from the second system′ to the first β will be negative. Using our new variable
we can rewrite the Lorentz factor as γ= 1p

1−β2
.

The length of the 4-vector can be determined using Pythagoras’ theorem. If we take time or energy to
be imaginary our 4-vector is invariant. Squaring the time or energy component will yield a negative
number. Apparently the following equality holds:

p2
x′ + p2

y′ + p2
z′ −

(
E′

c

)2

= p2
x + p2

y + p2
z −

(
E
c

)2
(3.2)

We can verify if this is indeed true by substituting the equations from 3.1 into 3.2:(
γ

(
px −βE

c

))2
+ p2

y + p2
z −

(
γ

(
E
c
−βpx

))2
= p2

x + p2
y + p2

z −
(

E
c

)2
=⇒ (3.3)

3Imaginary numbers are denoted by the symbol i, i is defined as i =p−1.
4See module ‘Michelson Morley’ for a description of the experiment and their results.
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(
γ

(
px −βE

c

))2
−

(
γ

(
E
c
−βpx

))2
= p2

x −
(

E
c

)2
=⇒ (3.4)

γ2
(
p2

x −2pxβ
2
(

E
c

)2)
−γ2

((
E
c

)2
−2pxβ

E
c
+β2 p2

x

)
= p2

x −
(

E
c

)2
=⇒ (3.5)

γ2 p2
x −2γ2 pxβ

E
c
+γ2β2

(
E
c

)2
−γ2

(
E
c

)2
+2γ2 pxβ

E
c
−γ2β2 p2

x = p2
x −

(
E
c

)2
=⇒ (3.6)

γ2 p2
x −γ2βp2

x −2γ2 pxβ
E
c
+2γ2 pxβ

E
c
+γ2β2

(
E
c

)2
−γ2

(
E
c

)2
= p2

x −
(

E
c

)2
=⇒ (3.7)

γ2 (
1−β2)

p2
x +γ2 (

β2 −1
)(E

c

)2
= p2

x −
(

E
c

)2
=⇒ (3.8)

1−β2

1−β2 p2
x +

β2 −1
1−β2

(
E
c

)2
= p2

x −
(

E
c

)2
=⇒ (3.9)

p2
x −

(
E
c

)2
= p2

x −
(

E
c

)2
(3.10)

Which proves that our 4-vector is invariant.

The length of this 4-vector can be related to another invariant; the (rest) mass. The next section will
describe how Einstein deduced that when the momentum equals p = γmv the energy becomes E = γmc2.

p2 −
(

E
c

)2
= (mγv)2 −

(
mγc2

c

)
= m2c2γ2

((v
c

)2 −1
)
= m2c2β

2 −1
1−β2 (3.11)

m2c2 =
(

E
c

)2
− p2 (3.12)

Using this equation we can calculate the momentum of a photon. Recall that a photon does not have a
(rest) mass and that therefore pphoton = Ephoton

c , or according to Planck pphoton = hv
c .

If we choose our units in such a way that all quantities are expresses in terms of light speed and
seconds5, equation 3.12 can be written as:

m =
√

E2 − p2 (3.13)

Changing units is a method often used in physics and mathematics to make problems more clear. A
different method is to make quantities dimensionless or ‘without units’. The variables β and γ in this
text are examples of dimensionless quantities.

4 Einstein and Minkowski

Albert Einstein studied the recoil of light in a thought experiment and with this he came to his now
famous equation E = mc2. He imagined a sealed box (in rest) with a certain length l and mass mbox. On

5This is known as the Natural Units (NU) system. There are actually two NU systems; Lorentz-Heaviside and Gaussian.
In both the speed of light is equal to 1 because they define ε0 = 1 and µ0 = 1 (c = 1

ε0µ0
). Looking at the equations in this text is

becomes clear why it is advantageous to set c at 1, is greatly reduces the number of calculations.
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the left side of the box we send a photon to the right, after a certain time this photon will be absorbed
by the right side of the box. We already mentioned how we can describe the momentum of a photon:

pphoton = Ephoton

c
(4.1)

Furthermore:

pbox = mboxvbox (4.2)

The speed of the box can be calculated by dividing the displacement of the box by the time the photon
exists:

pbox = mbox
∆xbox

∆t
(4.3)

Of course we must not forget the law of conservation of momentum. The box was stationary before the
photon was emitted, therefore:

mbox
∆xbox

∆t
+ Ephoton

c
= 0 (4.4)

We know that photons travel at the speed of light, thus the box will move ∆t = l
c seconds.

mbox
∆xbox

l
+ Ephoton

c2 = 0 (4.5)

If we know the displacement of the box we can solve this equality. We will now introduce a new quantity;
mphoton. The law of conservation of momentum still holds6:

mphotonc+mboxvbox = 0 (4.6)

mphotonc∆t+mboxvbox∆t = 0 (4.7)

mphotonl+mbox∆x = 0 (4.8)

Substitution in equation 4.5 yields:

mphoton = Ephoton

c2 (4.9)

Generalising the equation above results in the famous equation:

E = mc2 (4.10)

Einstein’s thought experiment tells us that when we put energy into an object, its mass will increase. In
the previous section we saw that the length of the 4-vector is invariant. This means that the (rest) mass

6Here something strange happens, the photon will not traverse the entire length of the box if the box is moving in the
opposite direction at the same moment. The assumption that the photon does travel the entire length only holds when the box
has a far greater mass than the photon, can you explain why?. And on a side note; what happens with ∆t?
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m is also invariant. We now have two different masses, the rest mass and the apparent or observed
mass. We will denote the observed mass as M:

E = Mc2 =αmc2 (4.11)

The observed mass M is a factor α larger than the rest mass m7. Calculating the momentum is now
done using:

p = Mv =αmv (4.12)

We can substitute this in equation 3.12:

m2c2 =
(
αmc2

c

)2

− (αmv)2 (4.13)

m2 =α2m2
(
1−

(v
c

)2
)

(4.14)

α2 = 1

1− ( v
c
)2 (4.15)

α= 1√
1− ( v

c
)2

(4.16)

Compare this α to the Lorentz factor γ, they are the same. The observed mass can thus also be written
as M = γm and energy as:

E = γmc2 (4.17)

What this equation tells us is that an object, even when it is not moving, has a certain amount of
energy. The classical equation for kinetic energy thus denotes a change in energy; ∆E = 1

2 mv2. In table
1 and figure ?? the importance of this distinction at difference speeds can be seen. At low speeds both
models give the same value (if we ignore the ‘mass energy’ term). The classical model was constructed
by Galilei, Huygens, Kepler, and Newton. They did not observe phenomena happening at the speed of
light. So it is no surprise that their model could be in error at higher speeds. At 0.1 c the difference
between the classical model and Einstein’s model is less then 1%. One tenth of the speed of light is
30000 km/s, compare this to the speed of weight falling from the Leaning Tower of Pisa in Galilei’s
experiments or the speed of the celestial bodies observed by Huygens and Kepler.

At low speeds the classical model is a good approximation reality. However, at high speeds the error
becomes unacceptably large. The speed of an object which has mass can never reach the speed of light.
As you can see in table 1 such an object would have an infinite amount of energy. Near the speed of
light most of the energy you put into an object in ‘transformed’ into mass. A direct consequence of this
is that all particles travelling at the speed of light must have no rest mass.

With the laws for conservation of energy and momentum we should be able to do some calculations

7In most literature the rest mass is denoted as m0, the observed mass is then written as m.
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v EEinstein (J) ∆Eclassical (J)
0c mc2 0

0.1c mc2 + 0.005mc2 0.005mc2

0.2c mc2 + 0.021mc2 0.020mc2

0.3c mc2 + 0.048mc2 0.045mc2

0.4c mc2 + 0.091mc2 0.080mc2

0.5c mc2 + 0.155mc2 0.125mc2

0.6c mc2 + 0.250mc2 0.180mc2

0.7c mc2 + 0.400mc2 0.245mc2

0.8c mc2 + 0.667mc2 0.320mc2

0.9c mc2 + 1.294mc2 0.405mc2

1.0c ∞ 0.500mc2

Table 1: Difference between the Einstein and classical model.

Figure 4.1: The energy as function of the speed (in terms of c) according to Einstein and the classical
model.



10

involving particles colliding at speeds near the speed of light.

While in Zurich, Albert Einstein was a student of Hermann Minkowski. During that time Minkowski
was working at multidimensional mathematical problems. He took the ideas of Poincaré and expanded
them into what we now call Minkowski space or Minkowski spacetime.

In 1915 Einstein expanded his special theory of relativity with the general theory of relativity. What
was missing in the special theory was gravity. In the general theory gravity is explained as a curving of
space(-time). Just at travelling at high speeds, gravity has an effect on time.

Exercise 1 : In the sections ‘Invariants’ and ‘Einstein and Minkowski’ we run the risks of circle
reasoning. Where does this risk occur and is this a problem?


